Blow-up rate for a nonlinear diffusion equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blow up Dynamic and Upper Bound on the Blow up Rate for critical nonlinear Schrödinger Equation

We consider the critical nonlinear Schrödinger equation iut = −∆u − |u| 4 N u with initial condition u(0, x) = u0 in dimension N . For u0 ∈ H1, local existence in time of solutions on an interval [0, T ) is known, and there exists finite time blow up solutions, that is u0 such that limt→T<+∞ |ux(t)|L2 = +∞. This is the smallest power in the nonlinearity for which blow up occurs, and is critical...

متن کامل

Blow-up for a reaction-diffusion equation with variable coefficient

We study the blow-up behavior for positive solutions of a reaction–diffusion equationwith nonnegative variable coefficient. When there is no stationary solution, we show that the solution blows up in finite time. Under certain conditions, we then show that any point with zero source cannot be a blow-up point. © 2012 Elsevier Ltd. All rights reserved.

متن کامل

A blow-up result for nonlinear generalized heat equation

Available online xxxx Keywords: Nonlinear heat equation Blow up Sobolev spaces with variable exponents a b s t r a c t In this paper we consider a nonlinear heat equation with nonlinearities of variable-exponent type. We show that any solution with nontrivial initial datum blows up in finite time. We also give a two-dimension numerical example to illustrate our result.

متن کامل

The Blow–up Rate for a Semilinear Parabolic Equation with a Nonlinear Boundary Condition

In this paper we obtain the blow-up rate for positive solutions of ut = uxx−λu, in (0, 1)×(0, T ) with boundary conditions ux(1, t) = uq(1, t), ux(0, t) = 0. If p < 2q − 1 or p = 2q − 1, 0 < λ < q, we find that the behaviour of u is given by u(1, t) ∼ (T − t) − 1 2(q−1) and, if λ < 0 and p ≥ 2q − 1, the blow up rate is given by u(1, t) ∼ (T − t) − 1 p−1 . We also characterize the blow-up profil...

متن کامل

Blow-up rate for a semi-linear accretive wave equation

X iv :0 71 0. 13 61 v3 [ m at hph ] 1 6 O ct 2 00 7 Blow-up rate for a semi-linear accretive wave equation M. Jazar∗ and Ch. Messikh Abstract. In this paper we consider the semi-linear wave equation: utt − ∆u = ut|ut| in R where 1 ≤ p ≤ 1 + 4 N−1 if N ≥ 2. We give the optimal blow-up rate for blowing up solutions of this equation. AMS Subject Classifications: 35L05,35L67

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2006

ISSN: 0893-9659

DOI: 10.1016/j.aml.2006.02.008